THE STEREOCHEMISTRY OF ANTIBIOTICS OF THE AUREOLIC ACID GROUP

Yu.A.Berlin, M.N.Kolosov, L.A.Piotrovich (Institute for Chemistry of the Natural Products, USSR Academy of Sciences, Moscow, USSR)

(Received in UK 23 February 1970; accepted for publication 5 March 1970)

AUREOLIC acid (mithramycin, LA-7017), chromomycins (aburamycins) and olivomycins (NSC A-649) comprise a single group of anti-tumour antibiotics of the general formula (Ia) (1-4). Their aglycones, chromomycinone and olivin, structurally elucidated by Japanese chemists (5) and by us (6), respectively, were ascribed different absolute configuration: olivin was formulated as (Ib) (7), while chromomycinone as 2,3,1'-enantio-(Ic) (8,9). Since the difference was at variance with the biogenetic relationship of the antibiotics, we correlated the configurations of olivin and chromomycinone and by stepwise degradation of the former to a derivative of D-(+)-tartaric acid chemically proved the absolute configuration S for the C₁, asymmetric centre of the two aglycones.

(Ia):
$$R^1$$
 and R^2 = carbohydrate
 $R = H$ or Me chains
(Ib): $R = R^1 = R^2 = H$
(Ic): $R = Me$, $R^1 = R^2 = H$

Periodate oxidation of chromomycinone (Ic) yielded formylchromomycinonic acid (IIb) (m.p. 220-221°, from acetonitrile; $[\alpha]_D^{20}$ +72°, in ethanol).

The ORD curves of (IIb) and the previously reported formylolivinic acid (IIa) (10) and of the two aglycones (as peracetates) in the range 280-600 nm proved to be quite similar, from which follows the identity of both the relative and the absolute configurations of olivin and chromomycinone.

Similar to chromomycinone (11), 3'-hydroxy-2'-ketone olivin was isomerized by 0.1 N KOH to the 2'-hydroxy-3'-ketone, isoolivin, which yielded the 3',4'-isopropylidene derivative (III) (m.p. 214-215° dec., from methanol; [α] $_D^{25}$ +45°, in ethanol). When the reaction was carried out in D_2 0, only H_2 and H_5 were substituted by deuterium, as shown by the NMR and mass spectra; hence the C_1 asymmetric centre was not affected in the isomerization. Compound (III) was permethylated by MeI + NaH in dimethylsulfoxide and the product after hydrolysis by 0.2 N HCl and oxidation by $Pb(OAc)_4$ yielded the lactone (IV) (m.p. 206-207° dec., from ethanol; $[\alpha]_D^{25}$ +29°, in benzene). This lactone on methanolysis with % methanolic HCl and subsequent dehydrogenation by Me_2 SO + Ac_2 O gave the 1,2-quinone (V) (m.p. 204-205°, from ethanol; $[\alpha]_D^{25}$ +108°, in acetone). Permanganate oxidation of the quinone afforded D-(+)-tartaric acid dimethyl ether ($[\alpha]_D^{25}$ +69°, in acetone), identical to an authentic sample.

Thus by direct chemical evidence the 2S,3R,1'S,3'S,4'R absolute configuration (I) has been unequivocally substantiated for all antibiotics of the aureolic acid group.

REFERENCES

- 1. Yu.A.Berlin, S.E.Esipov, M.N.Kolosov, M.M.Shemyakin, <u>Tetrahedron</u> <u>Letters</u>, 1643 (1966).
- 2. M.Miyamoto, Y.Kawamatsu, K.Kawashima, M.Shinohara, K.Tanaka, S.Tatsuoka, K.Nakanishi, <u>Tetrahedron</u>, <u>23</u>, 421 (1967).
- Yu.A.Berlin, O.A.Kiseleva, M.N.Kolosov, M.M.Shemyakin, V.S.Soifer,
 I.V.Vasina, I.V.Yartseva, V.D.Kuznetsov, Nature, 218, 193 (1968).
- G.P.Bakhaeva, Yu.A.Berlin, E.F.Boldyreva, O.A.Chuprunova, M.N.Kolosov
 V.S.Soifer, T.E.Vasiljeva, I.V.Yartseva, <u>Tetrahedron Letters</u>, 3595(1968).
- 5. M.Miyamoto, K.Morita, Y.Kawamatsu, S.Noguchi, R.Marumoto, K.Tanaka, S.Tatsuoka, K.Nakanishi, Y.Nakadaira, N.S.Bhacca, <u>Tetrahedron Letters</u>, 2355 (1964).
- 6. Yu.A.Berlin, O.A.Chuprunova, B.A.Klyashchitskii, M.N.Kolosov, G.Yu.Peck, L.A.Piotrovich, M.M.Shemyakin, I.V.Vasina, <u>Tetrahedron Letters</u>, 1425 (1966).
- 7. G.P.Bakhaeva, Yu.A.Berlin, O.A.Chuprunova, M.N.Kolosov, G.Yu.Peck, L.A.Piotrovich, M.M.Shemyakin, I.V.Vasina, Chem.Commun., 10 (1967).
- 8. M.Miyamoto, K.Morita, Y.Kawamatsu, K.Kawashima, K.Nakanishi, Tetrahedron, 23, 411 (1967).
- 9. Recently Japanese chemists revised the steric formulation of chromomycinone in favour of our configurational assignment: M.Harada, K.Nakanishi, S.Tatsuoka, J.Am.Chem.Soc., 91, 5896 (1969).
- 10. G.P.Bakhaeva, Yu.A.Berlin, I.V.Vasina, M.N.Kolosov, G.Yu.Peck,
 L.A.Piotrovich, O.A.Chuprunova, M.M.Shemyakin, <u>Doklady Akad.Nauk SSSR</u>,
 174, 590 (1967).
- 11. M.Miyamoto, K.Morita, Y.Kawamatsu. S.Noguchi, R.Marumoto, M.Sasai, A.Nohara, Y.Nakadaira, Y.Y.Sin, K.Nakanishi, <u>Tetrahedron</u>, <u>22</u>, 2761 (1966).